If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2-6x=0
a = 48; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·48·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*48}=\frac{0}{96} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*48}=\frac{12}{96} =1/8 $
| 6=x^2-4x+9 | | N+2m=15 | | 5x+17=2(2x+5) | | X2+6X=14+x | | X2+-6X=14+x | | 23+b=47 | | 4=4-2s-7s | | 1000h=100000 | | 10h=1000 | | 5-x/x^2=5 | | (1+r)^20=1.05 | | 32*y=256 | | 2x^2=-15-11x | | 3+y=-25 | | 780=2x+x | | 9/7r+45=-45 | | .35x=1 | | 2x+15+5x=20 | | 12+(2*4x)+(3x)=78 | | (2x-3)^3=0 | | 42=-6k | | P(x)=300-0.4x | | 12+4x+x=78 | | -7x+17+5x=0 | | 9(3x+6)6(7x-3)=12 | | 9(3x+6)-6(7x3)=12 | | 13^x-9=15^-4x | | 12=-6+f | | 50/75=x/30 | | 0=16t^2-64t | | 7(v+3)=-2v-24 | | 20+y=42 |